Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.351
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621911

RESUMO

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Colo , Camundongos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Nus , Fluoruracila/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Hipóxia , Receptores ErbB , Células-Tronco Neoplásicas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621945

RESUMO

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Assuntos
Nefropatias Diabéticas , Fator A de Crescimento do Endotélio Vascular , Ratos , Masculino , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ultrafiltração , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Fibrose , Hipóxia , Transdução de Sinais , RNA Mensageiro/metabolismo
3.
Sci Rep ; 14(1): 6275, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491188

RESUMO

Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.


Assuntos
Neuroblastoma , Humanos , Hipóxia Celular/genética , Linhagem Celular , Hipóxia/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
5.
Hum Cell ; 37(3): 768-781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478356

RESUMO

Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Ácido Láctico , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica
6.
Sci Rep ; 14(1): 5845, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462658

RESUMO

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias da Mama/patologia , Genes myc , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/metabolismo , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
J Agric Food Chem ; 72(11): 5944-5954, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466638

RESUMO

The objective of this study was to investigate the mechanism underlying nitric oxide (NO)-induced hypoxia-inducible factor-1α (HIF-1α) and its impact on yak muscle tenderness during post-mortem aging. The Longissimus thoracis et lumborum (LTL) muscle of yak were incubated at 4 °C for 0, 3, 6, 9, 12, 24, and 72 h after treatment with 0.9% saline, NO activator, or a combination of the NO activator and an HIF-1α inhibitor. Results indicated that elevated NO levels could increase HIF-1α transcription to achieve stable expression of HIF-1α protein (P < 0.05). Additionally, elevated NO triggered HIF-1α S-nitrosylation, which further upregulated the activity of key glycolytic enzymes, increased glycogen consumption, accelerated lactic acid accumulation, and decreased pH (P < 0.05). These processes eventually improved the tenderness of yak muscle during post-mortem aging (P < 0.05). The results demonstrated that NO-induced activation of HIF-1α S-nitrosylation enhanced glycolysis during post-mortem aging and provided a possible pathway for improving meat tenderness.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Óxido Nítrico , Animais , Bovinos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácido Láctico/metabolismo
8.
Sci Rep ; 14(1): 6738, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509125

RESUMO

Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs-one predominant, three variant, and two novel mutant isoforms-into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 h), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student's T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Mensageiro/metabolismo , Transfecção , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isoformas de Proteínas/genética
9.
Int Immunopharmacol ; 130: 111728, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38430801

RESUMO

The treatment of hepatocellular carcinoma (HCC) remains a major challenge in the medical field. Lenvatinib, a multi-target tyrosine kinase inhibitor, has demonstrated anti-HCC effects by targeting and inhibiting pathways such as vascular endothelial growth factor receptor 1-3 (VEGFR1-3). However, the therapeutic efficacy of Lenvatinib is subject to various influences, with the hypoxic microenvironment of the tumor being a pivotal factor. Consequently, altering the hypoxic milieu of the tumor emerges as a viable strategy to augment the efficacy of Lenvatinib. Hypoxia-inducible factor-1α (HIF-1α), synthesized by tumor cells in response to oxygen-deprived conditions, regulates the expression of resistance genes, promotes tumor angiogenesis and cell proliferation, enhances tumor cell invasion, and confers resistance to radiotherapy and chemotherapy. Thus, we constructed a self-designed siRNA targeting HIF-1α to suppress its expression and improve the efficacy of Lenvatinib in treating HCC. The therapeutic efficacy of siRNA-HIF-1α in combination with Lenvatinib on HCC were evaluated through in vivo and in vitro experiments. The results showed that the recombinant Salmonella delivering siRNA-HIF-1α in combination with Lenvatinib effectively inhibited tumor growth and prolonged the survival of tumor-bearing mice. This treatment approach reduced cell proliferation and angiogenesis in HCC tissues while promoting tumor cell apoptosis. Additionally, this combined therapy significantly increased the infiltration of T lymphocytes and M1 macrophages within the tumor microenvironment, as well as elevated the proportion of immune cells in the spleen, thereby potentiating the host's immune response against the tumor.


Assuntos
Carcinoma Hepatocelular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , RNA Interferente Pequeno , Terapêutica com RNAi , Salmonella , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Compostos de Fenilureia/uso terapêutico , Quinolinas/uso terapêutico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Terapia Combinada , Terapêutica com RNAi/métodos
10.
FASEB J ; 38(5): e23499, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430222

RESUMO

Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.


Assuntos
Drosophila , Tolerância ao Exercício , Subunidade alfa do Fator 1 Induzível por Hipóxia , Sono , Animais , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
11.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485816

RESUMO

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Assuntos
NAD , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia Celular
12.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484558

RESUMO

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Bleomicina , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Citocinas , Doxorrubicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral
13.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456491

RESUMO

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Assuntos
Cobalto , Fator de Transcrição Associado à Microftalmia , Neoplasias , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Sumoilação , Linhagem Celular Tumoral , Poliploidia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Movimento Celular , Proliferação de Células
14.
J Biol Chem ; 300(3): 105727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325739

RESUMO

Hypoxia is a significant source of metabolic stress that activates many cellular pathways involved in cellular differentiation, proliferation, and cell death. Hypoxia is also a major component in many human diseases and a known driver of many cancers. Despite the challenges posed by hypoxia, there are animals that display impressive capacity to withstand lethal levels of hypoxia for prolonged periods of time and thus offer a gateway to a more comprehensive understanding of the hypoxic response in vertebrates. The weakly electric fish genus Brachyhypopomus inhabits some of the most challenging aquatic ecosystems in the world, with some species experiencing seasonal anoxia, thus providing a unique system to study the cellular and molecular mechanisms of hypoxia tolerance. In this study, we use closely related species of Brachyhypopomus that display a range of hypoxia tolerances to probe for the underlying molecular mechanisms via hypoxia inducible factors (HIFs)-transcription factors known to coordinate the cellular response to hypoxia in vertebrates. We find that HIF1⍺ from hypoxia tolerant Brachyhypopomus species displays higher transactivation in response to hypoxia than that of intolerant species, when overexpressed in live cells. Moreover, we identified two SUMO-interacting motifs near the oxygen-dependent degradation and transactivation domains of the HIF1⍺ protein that appear to boost transactivation of HIF1, regardless of the genetic background. Together with computational analyses of selection, this shows that evolution of HIF1⍺ are likely to underlie adaptations to hypoxia tolerance in Brachyhypopomus electric fishes, with changes in two SUMO-interacting motifs facilitating the mechanism of this tolerance.


Assuntos
Peixe Elétrico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio , Animais , Ecossistema , Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Anaerobiose , Oxigênio/metabolismo
15.
Mol Carcinog ; 63(5): 834-848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372346

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular response to hypoxia, and is activated in many cancers contributing to many steps in the metastatic cascade by acting as a key transcription co-regulator for a large number of downstream genes. Presence of hypoxia within a tumor is spatially nonuniform, and can also by dynamic. Further, although HIF-1 is primarily stabilized and activated by lack of molecular O2, its stability is also affected by other factors present in the tumor microenvironment. HIF-1 also crosstalks with other transcription factors in co-regulating gene expression. Consequently, it is nontrivial to predict the gene expression patterns in cells in response to hypoxia, or HIF-1 activation. Additionally, cancers originating from tissue origins with different basal level of partial oxygen tension may activate HIF-1 at different threshold of hypoxia. We analyzed large published single cell RNAseq data for colorectal, lung, and pancreatic cancers to investigate the phenotypic outcome of HIF-1 activation in cancer cells. We found that cancers from tissues with different partial O2 tension levels exhibit HIF-1 activation at different stages of metastasis, and phenotypically respond differently to HIF-1 activation, likely by contextual co-option of different transcription factors. We experimentally confirmed these predictions by using cell lines representative of colorectal, lung, and pancreatic cancers, finding that while hypoxia enhances growth of colorectal cancer, it induces increased invasion of lung, and pancreatic cancers. Our analysis suggest that HIF-1 activation may act as a rheostat regulating downstream gene expression towards phenotypic outcomes differently in various cancers.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Hipóxia Celular/fisiologia , Neoplasias Pancreáticas/patologia , Hipóxia/genética , Neoplasias Colorretais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
16.
Biochem Biophys Res Commun ; 704: 149638, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38422899

RESUMO

BACKGROUND: Pheochromocytoma (PCC) is a rare neuroendocrine tumor. Angiogenesis is primary contributing factor for tumorigenesis. Cytochrome c oxidase 4I2 (COX4I2) has been confirmed to take part in the progression of cancer. Hypoxia-inducible factor 1A (HIF1A) is the main regulatory factor for the steady-state response of hypoxia, involved in metabolism and angiogenesis. In this study, we intended to explore the functions of COX4I2 in PCC and the effect mechanism between HIF1A and COX4I2. MATERIALS AND METHODS: The RNA-sequencing and immunohistochemistry tested COX4I2 expression in highly vascular PCC. Small interfering RNA (siRNA) was used to reduce the mRNA expression of COX4I2, and a small molecule inhibitor was utilized to reduce the protein expression of HIF1A. Culturing cells in 1% O2environment was performed to activate HIF1A. Western blot was applied to quantify the expression of target genes at the protein levels. The supernatant from PCC cells and fibroblasts acted as the conditioned medium. We conducted the tube formation and transwell assays in human vascular endothelial cells (HUVECs) to determine angiogenesis, the binding of COX4I2 promoter and HIF1A was evaluated by the dual luciferase reporter assay. RESULTS: COX4I2 had been rigorously shown to be overexpressed in highly vascular PCC. Knockdown of COX4I2 in PCC cells (MPC) did not significantly impact angiogenesis, while knockdown of COX4I2 in fibroblast (3T3) notably inhibited angiogenesis. RNA sequencing suggested that the expression of 11 vascular markers, such as CD34 and angiogenesis associated pathways in 3T3, decreased with knockdown of COX4I2. HIF1A had been shown to enhance the mRNA expression of COX4I2 through transcriptional regulation. Activation and inhibition of HIF1A resulted in upregulation and downregulation of COX4I2, respectively. The HIF1A inhibitor demonstrated a reduction in angiogenesis. CONCLUSION: COX4I2 is overexpressed in highly vascular PCC and contributes to angiogenesis in fibroblasts. Mechanistically, HIF1A transcriptional regulation enhances COX4I2 and its effects on angiogenesis in PCC. COX4I2 might serve as a vascular marker and represent a potential target for vascular therapy.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feocromocitoma/genética , Células Endoteliais/metabolismo , 60489 , RNA Interferente Pequeno/genética , Neoplasias das Glândulas Suprarrenais/genética , Hipóxia/genética , RNA Mensageiro/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
17.
Immunogenetics ; 76(2): 93-108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326657

RESUMO

Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.


Assuntos
Macrófagos , Microglia , Animais , Humanos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação , Microglia/metabolismo
18.
Oncol Rep ; 51(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391012

RESUMO

The incidence of thyroid carcinoma (TC) has exhibited a rapid increase in recent years. A proportion of TCs exhibit aggressive behavior. The present study aimed to investigate the potential role of hypoxia­hypoxia inducible factor 1 subunit α (HIF­1α)­periostin axis in the progression of TC. The upregulation of periostin and HIF­1α expression levels was detected in 95 clinical TC tissues as compared with normal thyroid tissues. Hypoxia promoted the viability and invasion of TC cells and this effect was inhibited by the downregulation of periostin. Hypoxia also induced the Warburg effect in TC and this effect was inhibited by the silencing of periostin. Further investigations revealed that hypoxia activated HIF­1α, which in turn regulated the expression of periostin. Immunoprecipitation and dual luciferase reporter assays demonstrated that HIF­1α upregulated the expression of periostin by binding to the promoter of periostin. On the whole, these findings suggest the existence of a hypoxia­HIF­1α­periostin axis in TC and indicate the role of this axis in the progression of TC.


Assuntos
60491 , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proliferação de Células/genética
19.
Sci Rep ; 14(1): 3620, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351156

RESUMO

Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat. Adiponectin- and T-cadherin-dependent increased EV production may be involved in the pleiotropic effects of HIF-1 activators.


Assuntos
Adiponectina , Caderinas , Vesículas Extracelulares , Camundongos , Animais , Fator 1 Induzível por Hipóxia , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Transcricional
20.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338821

RESUMO

Acute-on-chronic liver failure (ACLF) is associated with increased mortality. Specific therapy options are limited. Hypoxia-inducible factor 1 alpha (HIF-1α) has been linked to the pathogenesis of chronic liver disease (CLD), but the role of HIF-1α in ACLF is poorly understood. In the current study, different etiologies of CLD and precipitating events triggering ACLF were used in four rodent models. HIF-1α expression and the intracellular pathway of HIF-1α induction were investigated using real-time quantitative PCR. The results were verified by Western blotting and immunohistochemistry for extrahepatic HIF-1α expression using transcriptome analysis. Exploratory immunohistochemical staining was performed to assess HIF-1α in human liver tissue. Intrahepatic HIF-1α expression was significantly increased in all animals with ACLF, regardless of the underlying etiology of CLD or the precipitating event. The induction of HIF-1α was accompanied by the increased mRNA expression of NFkB1 and STAT3 and resulted in a marked elevation of mRNA levels of its downstream genes. Extrahepatic HIF-1α expression was not elevated. In human liver tissue samples, HIF-1α expression was elevated in CLD and ACLF. Increased intrahepatic HIF-1α expression seems to play an important role in the pathogenesis of ACLF, and future studies are pending to investigate the role of therapeutic HIF inhibitors in ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Humanos , Insuficiência Hepática Crônica Agudizada/etiologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Previsões , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...